Answer to Question \#84513 - Math - Statistics and Probability

There are two reservation counters for all ticket booking for customers, who arrive in a Poisson fashion at an average rate of 10 per hour. The service time for booking clerks at both the counters are exponentially distributed with mean of 5 minutes. These counters remain open for 12 hours per day.

Question

i) Find the hours of the day for which all the clerks are busy.

Solution

Two counters can serve:

$$
\frac{2}{5} \frac{\text { customers }}{\text { minutes }}=\frac{10}{25} \frac{\text { customers }}{\text { minutes }}
$$

So clerks are busy 25 minutes in one hour.
Then clerks are busy per day:

$$
25 \cdot 12=300 \mathrm{~min}=5 \text { hours }
$$

Question

ii) Find the expected waiting time of customers in the queue.

Solution

Arrival rate:

$$
\lambda=\frac{10}{1 \text { hour }}
$$

Service rate:

$$
\mu=\frac{1}{5 \min }=\frac{12}{1 \text { hour }}
$$

The expected waiting time of customers in the queue:

$$
W_{q}=\frac{\lambda}{2 \mu(\mu-\lambda)}=\frac{10}{2 \cdot 12 \cdot(12-10)}=\frac{10}{48}=\frac{5}{24} \text { hours }=12.5 \mathrm{~min}
$$

