Answer on Question \#84483 - Math - Statistics and Probability

Question

A population consists of three numbers 2, 5, 8. Enumerate all possible samples of size 2 which can be drawn without replacement from this population. Verify that the sample mean is an unbiased estimate of the population mean. Calculate the standard error of the sample mean.

Solution

All possible samples of size 2 which can be drawn without replacement from this population:
2,$5 ; 2,8 ; 5,8 ; 5,2 ; 8,2 ; 8,5$
$\bar{x}_{1}=\frac{2+5}{2}=3.5 ; \bar{x}_{2}=\frac{2+8}{2}=5 ; \bar{x}_{3}=\frac{5+8}{2}=6.5 ;$
$\bar{x}_{4}=\frac{5+2}{2}=3.5 ; \bar{x}_{5}=\frac{8+2}{2}=5 ; \bar{x}_{6}=\frac{8+5}{2}=6.5$
$\frac{\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+\bar{x}_{4}+\bar{x}_{5}+\bar{x}_{6}}{6}=\frac{3.5+5+6.5+3.5+5+6.5}{6}=5$
$\mu=\frac{2+5+8}{3}=5$
The mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn.
$\frac{\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+\bar{x}_{4}+\bar{x}_{5}+\bar{x}_{6}}{6}=5=\mu$
$\sigma^{2}=\frac{1}{n} \cdot \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$
$\sigma^{2}=\frac{1}{3} \cdot \sum_{i=1}^{3}\left(x_{i}-5\right)^{2}=\frac{(2-5)^{2}+(5-5)^{2}+(5-8)^{2}}{3}=6$
Calculate the standard error of the sample mean
$\sigma_{M}=\frac{\sigma}{\sqrt{n}}$
$\sigma_{M}=\frac{\sqrt{6}}{\sqrt{3}}=\sqrt{2}$

