Question: Consider a random sample (WOR) of two households from a population of households having monthly income (in Rs.) as follows:

Household	1	2	3	4	5
Income (In Rs.)	1000	1200	900	1500	1300

Enumerate all possible samples (WOR) of size 2 and show that the sample mean gives an unbiased estimate of population mean.

Solution: The given population has total 5 households, and here we shall consider a random sample "without replacement". Therefore, there are total $\binom{5}{2}=10$ possible outcomes for a sample of size 2.

In the following table, we represent these 10 outcomes and compute sample mean for each case:

Sample of size 2 $\left(\boldsymbol{X}_{1}, X_{2}\right)$	Sample mean $\left(\overline{\boldsymbol{X}}=\frac{X_{1}+X_{2}}{2}\right)$
$(1000,1200)$	$\frac{1000+1200}{2}=1100$
$(1000,900)$	$\frac{1000+900}{2}=950$
$(1000,1500)$	$\frac{1000+1500}{2}=1250$
$(1000,1300)$	$\frac{1000+1300}{2}=1150$
$(1200,900)$	$\frac{1200+900}{2}=1050$
$(1200,1500)$	$\frac{1200+1500}{2}=1350$
$(1200,1300)$	$\frac{900+1500}{2}=1200$
$(900,1500)$	$\frac{900+1300}{2}=1100$
$(900,1300)$	$\frac{1500+1300}{2}=1400$
$(1500,1300)$	

True mean of the population is,
$\mu=\frac{1000+1200+900+1500+1300}{5}=\frac{5900}{5}=1180$

As each of the 10 possible outcomes for the sample of size 2 is equally likely, each of them will occur with probability $\frac{1}{10}$. Therefore, the expectation is sample mean is,
$E(\bar{X})$
$=\frac{1}{10} \times(1100+950+1250+1150+1050+1350+1250+1200+1100+1400)$
$=\frac{1}{10} \times 11800$
$=1180=\mu$

Hence, we have, $\boldsymbol{E}(\overline{\boldsymbol{X}})=\boldsymbol{\mu}$
This shows that, sample mean is unbiased estimate of population mean.

