Answer to Question #84129 - Math - Statistics and Probability

Question: Consider a random sample (WOR) of two households from a population of households having monthly income (in Rs.) as follows:

Household	1	2	3	4	5
Income (In Rs.)	1000	1200	900	1500	1300

Enumerate all possible samples (WOR) of size 2 and show that the sample mean gives an unbiased estimate of population mean.

Solution: The given population has total 5 households, and here we shall consider a random sample "without replacement". Therefore, there are total $\binom{5}{2} = 10$ possible outcomes for a sample of size 2.

In the following table, we represent these 10 outcomes and compute sample mean for each case:

$(= X_1 + X_2)$				
Sample of size 2 (X_1, X_2)	Sample mean $\left(\overline{X}=rac{X_1+X_2}{2} ight)$			
(1000, 1200)	1000 + 1200			
	1000000000000000000000000000000000000			
(1000, 900)	1000 + 900			
	$\frac{1}{2} = 950$			
(1000, 1500)	1000 + 1500			
	$\frac{1000 + 1000}{2} = 1250$			
(1000, 1300)	1000 + 1300			
	$\frac{1}{2} = 1150$			
(1200, 900)	1200 + 900			
	$\frac{1}{2} = 1050$			
(1200, 1500)	1200 + 1500 - 1250			
	1100000000000000000000000000000000000			
(1200, 1300)	$\frac{1200+1300}{2} = 1250$			
	2			
(900, 1500)	$\frac{900+1500}{2} = 1200$			
	2			
(900, 1300)	$\frac{900+1300}{2} = 1100$			
	2			
(1500, 1300)	$\frac{1500 + 1300}{2} = 1400$			
	2 - 1400			

True mean of the population is,

 $\mu = \frac{1000 + 1200 + 900 + 1500 + 1300}{5} = \frac{5900}{5} = 1180$

As each of the 10 possible outcomes for the sample of size 2 is equally likely, each of them will occur with probability $\frac{1}{10}$. Therefore, the expectation is sample mean is,

$$E(\bar{X}) = \frac{1}{10} \times (1100 + 950 + 1250 + 1150 + 1050 + 1350 + 1250 + 1200 + 1100 + 1400)$$
$$= \frac{1}{10} \times 11800$$
$$= 1180 = \mu$$

Hence, we have, $E(\overline{X}) = \mu$ This shows that, sample mean is unbiased estimate of population mean. <u>Answer</u>