Answer on Question \#83912 - Math - Statistics and Probability

Let probability of getting an even number in one throw $=\mathrm{p}$
Then probability of getting an odd number in one throw $=1-\mathrm{p}$
Let the random variable $X=$ the number of even numbers in 5 throws, i.e. in 5 trials;
$\mathrm{n}=5$, the probability of success $=\mathrm{p}, \mathrm{X} \sim \mathrm{B}(\mathrm{n}, \mathrm{p})$, i.e. $X \sim B(5, p)$.
$\mathrm{P}[\mathrm{X}=\mathbf{r}]=\binom{5}{r} p^{r}(1-p)^{5-r}$

$$
r=0,1,2,3,4,5
$$

Given $\mathrm{P}[\mathrm{X}=3]=2 \mathrm{P}[\mathrm{X}=2]$
$\Rightarrow\binom{5}{3} p^{3}(1-p)^{2}=2\binom{5}{2} p^{2}(1-p)^{3}$
$\Rightarrow 10 p^{3}(1-p)^{2}=2 \times 10 p^{2}(1-p)^{3}$
$\Rightarrow \quad p=2(1-p)$
$\Rightarrow p=2 / 3$

Probability of no even number in one set of 5 trials $=\mathrm{P}[\mathbf{X}=0]=\binom{5}{0}(1-p)^{5}=\left(1-\frac{2}{3}\right)^{5}=\frac{1}{243}$
Hence expected number of sets out of 2500 sets showing no even number $=2500 \times \frac{1}{243}$

$$
\begin{aligned}
& =10.29 \\
& \approx 10 \text { sets. }
\end{aligned}
$$

Answer: about 10 sets.

