Answer to Question \#83738, Math / Calculus

Question

Find the inverse of the function $f(x)=6^{2 x+7}$. Give the domain of $f^{-1}(x)$ in interval notation

Solution

Given function is $f(x)=6^{2 x+7}$
If a function $f(x)$ is mapping x to y, then the inverse function of $f(x)$ maps y back to x.
$y=6^{2 x+7}$
Interchange the variables x and y
$x=6^{2 y+7}$
Solve $x=6^{2 y+7}$ for y
Taking log on both sides we get
$\ln (x)=\ln \left(6^{2 y+7}\right)$
$\ln (x)=(2 y+7) \ln (6)$
divide both sides by $\ln (6)$
$\frac{\ln (x)}{\ln (6)}=\frac{(2 y+7) \ln (6)}{\ln (6)}$
$\frac{\ln (x)}{\ln (6)}=2 y+7$
$2 y=\frac{\ln (x)}{\ln (6)}-7$
$2 y=\frac{\ln (x)-7 \ln (6)}{\ln (6)}$
$y=\frac{\ln (x)-7 \ln (6)}{2 \ln (6)}$
Hence, required inverse of the given function is $\frac{\ln (x)-7 \ln (6)}{2 \ln (6)}$
Domain of $f^{-1}(x)$:

The domain of the function is the set of input or argument values for which the function is real and defined.

The function $\frac{\ln (x)-7 \ln (6)}{2 \ln (6)}$ is defined for all $x>0$ and is real for $x>0$.
Thus, the domain of the function is $(0, \infty)$.

