Answer on Question \#82838 - Math - Statistics and Probability

The heights of 1000 students are approximately normally distributed with a mean of 154.5 cm and a standard deviation of 3.0 cm .

Question

a. If a student is selected at random, what is the probability that his height is more than 158 cm ?

Solution

$X \sim N\left(154.5,3.0^{2}\right)$
$z=\frac{x-\mu}{\sigma}$
$z=\frac{158-154.5}{3}=1.167$
$P(X>158)=1-P(X \leq 158)=1-P(Z \leq 1.167)=1-0.8783=0.1217$

Question

b. How many of the students will be more than 158 cm tall?

Solution

$P(X>158)=0.1217$
$N=1000$
$0.1217 \cdot 1000 \approx 122$ students

Question

c. Obtain the probability that a randomly selected student has a height between 150 cm and 160 cm .

Solution

$X \sim N\left(154.5,3.0^{2}\right)$
$z=\frac{x-\mu}{\sigma}$
$z_{1}=\frac{150-154.5}{3}=-1.500$
$z_{2}=\frac{160-154.5}{3}=1.833$
$P(150<X<160)=P(X<160)-P(X \leq 150)=$
$=P(Z<1.833)-P(Z \leq-1.500) \approx 0.9666-0.0668=0.8998$

Question

d. What is the probability that a random sample of size 36 will have a mean height of more than 155 cm ?

Solution

$\mu_{\bar{X}}=\mu_{X}=154.5$
$\sigma_{\bar{X}}=\frac{\sigma_{X}}{\sqrt{n}}=\frac{3.0}{\sqrt{36}}=0.5$
$z=\frac{\bar{x}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}=\frac{155-154.5}{0.5}=1.000$
$P(\bar{X}>155)=1-P(\bar{X} \leq 155)=1-P(Z \leq 1.000)=1-0.8413=0.1587$.

