# Answer on Question \#82756 - Math - Calculus Question 

What is the minimum value of $y=x^{\wedge} 2-4 x-6$

## Solution 1

$$
y=a x^{2}+b x+c \rightarrow \mathrm{a}=1, \mathrm{~b}=-4, \mathrm{c}=-6
$$

$a=1>0$ the parabola faces up and the vertex is the lowest point on the graph the line of symmetry:

$$
x=\frac{-b}{2 a}=2
$$

the vertex:

$$
x=2 \rightarrow y=1 \cdot 2^{2}-4 \cdot 2-6=-10 \rightarrow(2,-10)
$$

The minimum value of the function is $y(2)=-10$.
Answer: -10

## Solution 2

the derivative of the function:

$$
y^{\prime}(x)=2 x-4
$$

one critical point:

$$
y^{\prime}(x)=0=2 x-4 \rightarrow x=2
$$

the second derivative of the function:

$$
y^{\prime \prime}(x)=2 \rightarrow y^{\prime \prime}(2)=2>0 \rightarrow x=2 \text { is a point of minimum }
$$

The minimum value of the function is

$$
y(2)=2^{2}-4 \cdot 2-6=-10
$$

Answer: -10.

