Answer on Question \#82248 - Math - Calculus

Question

Siam wants to build a new garden. He wants to make a garden with perimeter P and area A and he also wants to keep the value of $P^{\wedge} 2 / A$ as small as he can. What will be the lowest value of $P^{\wedge} 2 / A$?

Solution

Assuming that his garden has rectangular shape, write an expression for P^{2} / A :

$$
\frac{P^{2}}{A}=\frac{[2(a+b)]^{2}}{a b} .
$$

To find minimum, simply find derivative and make it equal to zero, suppose that a is variable. We'll have to use the quotient rule:

$$
\begin{gathered}
\left(\frac{P^{2}}{A}\right)^{\prime}=\left(\frac{[2(a+b)]^{2}}{a b}\right)^{\prime}=4\left(\frac{a^{2}+b^{2}+2 a b}{a b}\right)^{\prime}=4 \frac{\left(a^{2}+b^{2}+2 a b\right)^{\prime} a b-(a b)^{\prime}\left(a^{2}+b^{2}+2 a b\right)}{(a b)^{2}}= \\
=4 \frac{2 a^{2} b+2 a b^{2}-a^{2} b-2 a b^{2}-b^{3}}{a^{2} b^{2}}=4 \frac{a^{2}-b^{2}}{a^{2} b}=0 .
\end{gathered}
$$

We see that $a \neq 0, b \neq 0$, and we have two solutions:

$$
\begin{gathered}
a=-b \\
a=b .
\end{gathered}
$$

The first one doesn't fit since we suppose that Siam lives on the Earth. With the second solution we have

$$
\frac{P^{2}}{A}=\frac{[2(a+a)]^{2}}{a^{2}}=16 .
$$

Answer: $\min \left\{\frac{P^{2}}{A}\right\}=16$.

