Answer on Question \#82197 - Math - Calculus

Question

In the system shown below, what are the coordinates of the solution that lies in quadrant II?
Write your answer in the form (a, b) without using spaces.

$$
\begin{aligned}
& x^{2}+y^{2}=5 \\
& y=\frac{1}{4} x^{2}
\end{aligned}
$$

Solution

We are given equations

$$
\begin{equation*}
x^{2}+y^{2}=5 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{1}{4} x^{2} \tag{2}
\end{equation*}
$$

We can find intersection points by solving system of equations (1) and (2). From the equation (2) we find

$$
\begin{equation*}
x^{2}=4 y \tag{3}
\end{equation*}
$$

Substitution (3) into equation (1) gives

$$
4 y+y^{2}=5
$$

This is a quadratic equation. Rewrite it in the form

$$
y^{2}+4 y-5=0
$$

And solve it for y

$$
\begin{gathered}
D=4^{2}-4(-5)=16+20=36 \\
y_{1}=\frac{-4+\sqrt{36}}{2}=\frac{-4+6}{2}=\frac{2}{2}=1 \\
y_{2}=\frac{-4-\sqrt{36}}{2}=\frac{-4-6}{2}=\frac{-10}{2}=-5
\end{gathered}
$$

By substitution y_{1} and y_{2} into equation (3) we find x
$x^{2}=4 \cdot 1 \Rightarrow>x_{1}=-2$ and $x_{2}=2$
$x^{2}=4 \cdot(-5)=>x^{2}=-20$ this equation doesn't have any solution

So, we have two points of intersection $(-2,1)$ and (2,1)

Point ($-2,1$) is in quadrant II
Point $(2,1)$ is in quadrant I

Answer: coordinates of intersection point in quadrant II is ($-2,1$).

