Answer on Question \#82195 - Math - Calculus

Question

What is the maximum number of intersection points a hyperbola and a circle could have?

Solution

The canonical equation of circle is

$$
x^{2}+y^{2}=R^{2}
$$

The canonical equation of the hyperbola is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

The intersection points are determined by the solutions of the following system

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{2}+y^{2}=R^{2} \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{2}+y^{2}=R^{2} \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
\end{array}=>\left\{\begin{array}{c}
y^{2}=R^{2}-x^{2} \\
\frac{x^{2}}{a^{2}}-\frac{R^{2}-x^{2}}{b^{2}}=1
\end{array}=>\left\{\begin{array}{c}
y^{2}=R^{2}-x^{2} \\
x^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)=1+\frac{R^{2}}{b^{2}}
\end{array}\right.\right.\right. \\
& =\left\{\begin{array}{c}
y^{2}=R^{2}-x^{2} \\
x^{2}=\frac{a^{2}\left(b^{2}+R^{2}\right)}{a^{2}+b^{2}}=>\left\{\begin{array}{l}
x^{2}=\frac{a^{2}\left(b^{2}+R^{2}\right)}{a^{2}+b^{2}} \\
y^{2}=\frac{b^{2}\left(R^{2}-a^{2}\right)}{a^{2}+b^{2}}
\end{array}\right.
\end{array} .\left\{\begin{array}{l}
\end{array}\right.\right.
\end{aligned}
$$

The first equation can have two different solutions. The second equation can have two different solutions.
Therefore, the maximum number of intersection points is 4 .
Answer: 4.

