Answer on Question \#80755 - Math - Statistics and Probability

Question

An online retailer has two adverts posted in different parts of a well-known social networking website, Advertisement A and Advertisement B. An average of 2 'clicks' are generated by Advertisement A during the period Monday 10.00 to 10.05 am . There are on average 5 'clicks' generated by Advertisement B during the same period. Calculate the probability that on a particular Monday between 10.00 and 10.05 am :
i. Advertisement A generates at most 3 clicks. (5 marks)
ii. Advertisement A generates at least 4 clicks. (5 marks)
iii. Advertisement B generates no more than 4 clicks. (5 marks)
iv. Advertisement A generates exactly 2 clicks and Advertisement B exactly 2 clicks. (5 marks)
v. At least 3 clicks are generated in total by the two advertisements.

Solution

Let $X=$ the number of clicks on Advertisement A during the period Monday 10.00 to 10.05 am . X is a random variable and has Poisson distribution with pdf:

$$
P(X=k)=e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!}
$$

where λ_{1} is the average.
Let $Y=$ the number of clicks on Advertisement B during the period Monday 10.00 to $10.05 \mathrm{am} . Y$ is a random variable and has Poisson distribution with pdf:

$$
P(Y=k)=e^{-\lambda_{2}} \frac{\lambda_{2}{ }^{k}}{k!}
$$

where λ_{2} is the average.
Theorem: Let $X \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$. Also assume that X and Y are independent. Then $X+Y \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$.
i. The probability that Advertisement A generates at most 3 clicks
$P(X \leq 3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)=$
$=e^{-2} \frac{2^{0}}{0!}+e^{-2} \frac{2^{1}}{1!}+e^{-2} \frac{2^{2}}{2!}+e^{-2} \frac{2^{3}}{3!}=e^{-2}\left(1+2+2+\frac{4}{3}\right)=\frac{19}{3} e^{-2} \approx$
≈ 0.8571
ii. The probability that Advertisement A generates at least 4 clicks
$P(X \geq 4)=1-P(X \leq 3)=$
$=1-(P(X=0)+P(X=1)+P(X=2)+P(X=3))=$
$=1-\left(e^{-2} \frac{2^{0}}{0!}+e^{-2} \frac{2^{1}}{1!}+e^{-2} \frac{2^{2}}{2!}+e^{-2} \frac{2^{3}}{3!}\right)=1-\frac{19}{3} e^{-2} \approx 0.1429$
iii. The probability that Advertisement B generates no more than 4 clicks $P(Y \leq 4)=P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)+P(Y=4)=$ $=e^{-5} \frac{5^{0}}{0!}+e^{-5} \frac{5^{1}}{1!}+e^{-5} \frac{5^{2}}{2!}+e^{-5} \frac{5^{3}}{3!}+e^{-5} \frac{5^{4}}{4!}=$
$=e^{-5}\left(1+5+\frac{25}{2}+\frac{125}{6}+\frac{625}{24}\right)=\frac{523}{8} e^{-5} \approx 0.4405$
iv. Assume that X and Y are independent. Then the probability that Advertisement A generates exactly 2 clicks and Advertisement B exactly 2 clicks
$P(X=2 \& Y=2)=P(X=2) \cdot P(Y=2)=e^{-2} \frac{2^{2}}{2!} \cdot e^{-5} \frac{5^{2}}{2!}=25 e^{-7} \approx 0.0228$
v. The probability that at least 3 clicks are generated in total by the two advertisements
$P(X+Y \geq 3)=1-P(X+Y \leq 2)=$
$=1-(P(X+Y=0)+P(X+Y=1)+P(X+Y=2))=$
$=1-\left(e^{-(2+5)} \frac{(2+5)^{0}}{0!}+e^{-(2+5)} \frac{(2+5)^{1}}{1!}+e^{-(2+5)} \frac{(2+5)^{2}}{2!}\right)=$
$=1-e^{-7}\left(1+7+\frac{49}{2}\right)=1-\frac{65}{2} e^{-7} \approx 0.9704$.

