Answer on Question \#80519 - Math - Statistics and Probability

Question

A selection committee consisting of 10 members is to be formed from a group of 20 employees at a firm. Of the 20 employees, twelve are female. Calculate the probability that at most 8 committee members will be female.

Solution

Let A denote the event $\{$ at most 8 committee members are female\}.
By the formula of probability of complementary event
$P(A)=1-P(\bar{A})=1-P(\{$ more than 8 commitee members are female $\})$
The event \bar{A} is the union of two mutually exclusive events: B - there are 9 female members and C there are 10 female members. Calculate probabilities of each of these events.

The total number of ways to choose a committee is $\binom{20}{10}=\frac{20!}{10!10!}=184756$.
For the event B there are $\binom{12}{9}=\frac{12 \cdot 11 \cdot 10}{1 \cdot 2 \cdot 3}=220$ ways to choose 9 female members and $\binom{8}{1}=8$ ways to choose one male member. Then totally there are $220 \cdot 8=1760$ ways to choose a committee with 9 female members. Then
$P(B)=\frac{1760}{184756}$
For the event C there are $\binom{12}{10}=\frac{11 \cdot 12}{1 \cdot 2}=66$ ways to choose 10 female members. Then
$P(C)=\frac{66}{184756}$
Then totally
$P(\bar{A})=P(B)+P(C)=\frac{1760+66}{184756}=0.00988$,
$P(A)=1-P(\bar{A})=1-0.00988=0.990$.

