Answer on Question \#80474 - Math - Statistics and Probability

Question

The Average lifetime of a particular brand of car battery is 3 years with a standard deviation of 6 months. Assuming these lifetimes are normally distributed, calculate the:
a) percentage of these batteries that last more than 4 years
b) maximum lifetime of a battery to be in the 10% of batteries with the shortest lifetime

Solution

The lifetime of battery distribution is (in years)
$X \sim N\left(3,0.5^{2}\right)$.
Denote $F(x)=\int_{x}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t$. Values of F can be found in tables.
a) $P(X>4)=P\left(\frac{X-3}{0.5}>\frac{4-3}{0.5}\right)=P(z>2)=F(2)=0.0228$

So the percentage is 2.28%.
b) Denote the desired lifetime by a. Then 10% of batteries have lifetime less than a. This means $P(X>a)=0.9$.
We have
$P(X>a)=P\left(\frac{X-3}{0.5}>\frac{a-3}{0.5}\right)=F(2(a-3))$.
So $F(2(a-3))=0.9$
from which
$2(a-3)=F^{-1}(0.9)=-1.28$
and
$a=3-\frac{1.28}{2}=2.36$
Converting 0.36 hour to minutes (multiplying by 60) gives the answer: 2 hours 22 minutes.

