Answer on Question \#80397 - Math - Calculus

Question

Find the length of the curve,
$2 y^{2}=x^{3}$ from the vertex $(0,0)$ to the point $(4,4 \sqrt{ } 2)$.

Solution

For the top half of the curve we have

$$
\begin{aligned}
y=\frac{x^{3 / 2}}{\sqrt{2}} \quad \rightarrow \quad \frac{d y}{d x}=\frac{3}{2 \sqrt{2}} x^{1 / 2} \\
y(0)=\frac{0^{3 / 2}}{\sqrt{2}}=0 \quad \text { and } \quad y(4)=\frac{4^{3 / 2}}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4 \sqrt{2} \rightarrow(0,0) \text { and }(4,4 \sqrt{2}
\end{aligned}
$$

and so the arc length formula gives

$$
\begin{gathered}
L=\int_{0}^{4} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{4} \sqrt{1+\left(\frac{3}{2 \sqrt{2}} x^{1 / 2}\right)^{2}} d x=\int_{0}^{4} \sqrt{1+\frac{9}{8}} x d x= \\
=\int_{0}^{4} \sqrt{1+\frac{9}{8}} x d\left(\frac{8}{9} \cdot \frac{9}{8} x\right)=\frac{8}{9} \cdot \int_{0}^{4} \sqrt{1+\frac{9}{8} x d\left(\frac{9}{8} x\right)=\frac{8}{9} \cdot \int_{0}^{4} \sqrt{1+\frac{9}{8}} x d\left(1+\frac{9}{8} x\right)=}
\end{gathered}
$$

If we substitute $u=1+\frac{9}{8} x$, then $d u=\frac{9}{8} d x$. When $x=0, u=1$, when $x=4, u=\frac{11}{2}$

$$
\begin{gathered}
\left.\left.\left.L=\frac{8}{9} \int_{1}^{\frac{11}{2}} \sqrt{u} d u=\frac{8}{9} \cdot \int_{1}^{\frac{11}{2}} u^{1 / 2} d u=\frac{8}{9} \cdot \frac{1}{\frac{1}{2}+1} \cdot u^{1 / 2+1}\right]_{1}^{11 / 2}=\frac{8}{9} \cdot \frac{2}{3} \cdot u^{3 / 2}\right]_{1}^{11 / 2}=\frac{16}{27} \cdot u^{3 / 2}\right]_{1}^{11 / 2}= \\
=\frac{16}{27} \cdot\left[\left(\frac{11}{2}\right)^{3 / 2}-1\right]
\end{gathered}
$$

Without a substitution it will be

$$
\begin{gathered}
L=\frac{8}{9} \cdot \int_{0}^{4} \sqrt{1+\frac{9}{8} x d}\left(1+\frac{9}{8} x\right)=\frac{8}{9} \cdot \int_{0}^{4}\left(1+\frac{9}{8} x\right)^{1 / 2} d\left(1+\frac{9}{8} x\right)= \\
\left.\left.=\frac{8}{9} \cdot \frac{1}{\frac{1}{2}+1} \cdot\left(1+\frac{9}{8} x\right)^{1 / 2+1}\right]_{0}^{4}=\frac{8}{9} \cdot \frac{2}{3} \cdot\left(1+\frac{9}{8} x\right)^{3 / 2}\right]_{0}^{4}=\frac{16}{27} \cdot\left[\left(1+\frac{9}{8} \cdot 4\right)^{3 / 2}-\left(1+\frac{9}{8} \cdot 0\right)^{3 / 2}\right]= \\
=\frac{16}{27} \cdot\left[\left(1+\frac{9}{2}\right)^{3 / 2}-1\right]=\frac{16}{27}\left[\left(\frac{11}{2}\right)^{3 / 2}-1\right]=\frac{16}{27}\left[\frac{11}{2} \sqrt{\frac{11}{2}}-1\right]=\frac{4}{27}\left[11 \sqrt{11} \cdot \frac{4}{2 \sqrt{2}}-4\right]=
\end{gathered}
$$

$$
=\frac{4}{27}(11 \sqrt{22}-4)=\frac{1}{27}(44 \sqrt{22}-16)=\frac{44 \sqrt{22}-16}{27}
$$

Answer: $L=\frac{1}{27}(44 \sqrt{22}-16)$

