Answer on Question \#80375 - Math - Statistics and Probability

Question

(3) The probability that a regularly scheduled flight departs on time is $P(D)=0.83$; the probability that it arrives on time is $P(A)=0.82$; and the probability that it departs and arrives on time is $P(D \cap A)=0.78$. Find the probability that a plane
(a) arrives on time, given that it departed on time, and
(b) departed on time, given that it has arrived on time.

Solution

Using a conditional probability for any two events A and D :

$$
P(D \cap A)=P(A) P(D \mid A)
$$

and

$$
P(D \cap A)=P(D) P(A \mid D)
$$

(a)

$$
\begin{gathered}
P(A \mid D)=\frac{P(D \cap A)}{P(D)} \\
P(A \mid D)=\frac{0.78}{0.83}=\frac{78}{83} \approx 0.94
\end{gathered}
$$

(b)

$$
\begin{gathered}
P(D \mid A)=\frac{P(D \cap A)}{P(A)} \\
P(D \mid A)=\frac{0.78}{0.82}=\frac{39}{41} \approx 0.95
\end{gathered}
$$

Answer: (a) 78/83; (b) 39/41.

