Answer on Question \#80341 - Math - Calculus

Question

Prove that for every x greater than $0, \mathrm{x} / 1+\mathrm{x} 2$ less than tan inverse x less than x

Solution

We can prove this inequality by using the Mean Value Theorem:
If $f(x)$ is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), there exists a number $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

We want to prove the inequality $\frac{x}{1+x^{2}}<\arctan x<x$.
Let $x>0$. Applying the Mean Value Theorem to the function $f(x)=\arctan x$ on the interval $[0, x]$ gives a number c such that

$$
f^{\prime}(c)=\left.(\arctan x)^{\prime}\right|_{x=c}=\left.\frac{1}{1+x^{2}}\right|_{x=c}=\frac{1}{1+c^{2}} .
$$

So we have

$$
\begin{gathered}
\frac{1}{1+c^{2}}=\frac{\arctan x-\arctan 0}{x-0} ; \\
\frac{1}{1+c^{2}}=\frac{\arctan x}{x} ; \\
\arctan x=\frac{x}{1+c^{2}}
\end{gathered}
$$

We remember that $c \in(0, x)$, this gives us $0<c<x$, so we have the following inequality

$$
\frac{x}{1+x^{2}}<\frac{x}{1+c^{2}}<x
$$

and finally

$$
\frac{x}{1+x^{2}}<\arctan x<x
$$

Proof is complete.

