Answer on Question \#80314 - Math - Calculus

Question

Find the points of inflections of the curve $y=x^{\wedge} 4-4 x^{\wedge} 3-18 x^{\wedge} 2+1$

Solution

To find the inflection point of a function, it is necessary to find a second-order derivative function and equate it to zero.

$$
\begin{aligned}
& y^{\prime \prime}=\left(x^{\wedge} 4-4 x^{\wedge} 3-18 x^{\wedge} 2+1\right)^{\prime \prime}=12 x^{\wedge} 2-24 x-36 \\
& 12 x^{\wedge} 2-24 x-36=0 \\
& x^{\wedge} 2-2 x-3=0(a=1, b=-2, c=-3) \\
& D=b^{\wedge} 2-4 a c \\
& x 1=\left(-b+(D)^{\wedge} 0.5\right) / 2 a \\
& x 2=\left(-b-(D)^{\wedge} 0.5\right) / 2 a \\
& D=4+12=16 \\
& x 1=(2+4) / 2=3 \\
& x 2=(2-4) / 2=-1 \\
& y 1=y(3)=\left(3^{\wedge} 4-4 *(3)^{\wedge} 3-18^{*}(3)^{\wedge} 2+1\right)=-188 \\
& y 2=y(-1)=\left((-1)^{\wedge} 4-4^{*}(-1)^{\wedge} 3-18^{*}(-1)^{\wedge} 2+1\right)=-12
\end{aligned}
$$

Thus, the points of inflection are $(x 1, y 1)=(3,-188),(x 2, y 2)=(-1,-12)$.

Answer: $(x 1, y 1)=(3,-188),(x 2, y 2)=(-1,-12)$.

