Answer on Question \#79583 - Math - Calculus

Question

Form the PDE
$2 z=(a x+y)^{\wedge} 2+b$

Solution

Given that

$$
\begin{equation*}
f(x, y, z)=2 z-(a x+y)^{2}-b=0 \tag{1}
\end{equation*}
$$

where z is a function of x and y, and a, b are arbitrary constants.

Form the PDE by eliminating arbitrary constants. Then differentiating (1) partially with respect to x and y respectively, we have

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial x}=-2 a(a x+y)+2 \frac{\partial z}{\partial x}=0 & \rightarrow z_{x}=a(a x+y) \\
\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial y}=-2(a x+y)+2 \frac{\partial z}{\partial y}=0 & \rightarrow z_{y}=a x+y \tag{3}
\end{array}
$$

It follows from (2) and (3) that

$$
\begin{equation*}
\frac{z_{x}}{z_{y}}=\frac{a(a x+y)}{a x+y}=a \tag{4}
\end{equation*}
$$

It follows from (3) and (4) that

$$
\begin{gathered}
z_{y}=\frac{z_{x}}{z_{y}} x+y \\
\left(\frac{\partial z}{\partial y}\right)^{2}-x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=0
\end{gathered}
$$

Answer: $\left(\frac{\partial z}{\partial y}\right)^{2}-x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=0$.

