Answer on Question #79272 - Math - Statistics and Probability

Question

Given the data:

x123456789

v 9 8 10 12 11 13 14 16 15

- (a) Calculate the coefficient of correlation
- (b) Obtain the line of regression
- (c) Estimate the value of y which should correspond to x = 6.2

Solution

(a)

A correlation coefficient is given by a formula:

$$r_{xy} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sum_{i=1}^{N} (y_i - \bar{y})^2}},$$

where x and y are the sample means of x and y

Calculate the sample means (N=9):

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i = 5$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i = 12$$

Thus, the correlation coefficient $r_{xy} = 0.95$.

(b)

Consider the simple linear regression model and find the linear function y=Ax+B that best fits the data. Use the method of least squares to find optimal values of parameters A and B.

It is necessary to minimize the sum:

$$S = \sum_{i=1}^{N} (y_i - (Ax_i + B))^2$$

The minimum of the sum can be found by setting the partial derivatives to zero.

$$\frac{\partial S}{\partial A} = -2\sum_{i=1}^{N} x_i (y_i - Ax_i - B) = -2N(\overline{xy} - A\overline{x^2} - B\overline{x}) = 0$$

$$\frac{\partial S}{\partial B} = -2\sum_{i=1}^{N} (y_i - Ax_i - B) = -2N(\bar{y} - A\bar{x} - B) = 0,$$

where
$$\overline{xy} = \frac{1}{N} \sum_{i=1}^{N} x_i y_i = \frac{199}{3}, \ \overline{x^2} = \frac{1}{N} \sum_{i=1}^{N} x_i^2 = \frac{95}{3}.$$

Thus, we receive the system of equations:

$$\begin{cases} -A\overline{x^2} - B\overline{x} + \overline{x}\overline{y} = 0\\ -A\overline{x} - B + \overline{y} = 0 \end{cases}$$

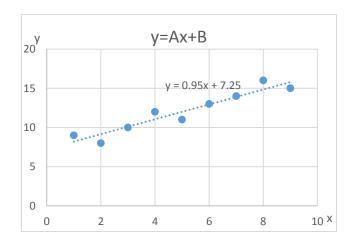
Solving this system, we obtain the values of the parameters A and B:

$$A = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\overline{x^2} - \overline{x}} = 0.95$$

$$B = \frac{\overline{x^2} \, \overline{y} - \overline{x} \, \overline{xy}}{\overline{x^2} - \overline{x}} = 7,25$$

The equation of the regression line is y = 0.95x + 7.25

(c)


To estimate the value of y, which correspond to x=6.5 we should substitute the value of x into the equation of the line.

$$y = 0.95 \times 6.5 + 7.25 = 13.425$$

Comment

The data used in the calculations are given in table.

Xi	Xi ²	Xi- $\bar{\chi}$	$(xi-\overline{x})^2$	уi	yi - \overline{y}	(yi - \bar{y}) ²	$(x_i - \bar{x})(y_i - \bar{y})$	xy
1	1	-4	16	9	-3	9	12	9
2	4	-3	9	8	-4	16	12	16
3	9	-2	4	10	-2	4	4	30
4	16	-1	1	12	0	0	0	48
5	25	0	0	11	-1	1	0	55
6	36	1	1	13	1	1	1	78
7	49	2	4	14	2	4	4	98
8	64	3	9	16	4	16	12	128
9	81	4	16	15	3	9	12	135
$\overline{\mathbf{x}}$	$\overline{x^2}$		$\sum (x_i - \overline{x})^2$	ÿ		$\sum (y_i - \overline{y})^2$	$\sum (x_i - \overline{x})(y_i - \overline{y})$	xy
5	31.67		60	12		60	57	66.33

Answer:

(a)
$$r_{xy} = 0.95$$

(b)
$$y = 0.95x + 7.25$$

(c)
$$x = 6.5$$
, $y = 13.425$