Answer on question \#79058 - Math - Differential Equations

Question

Solve the initial value problem
$y^{\prime}-2 x y=1, y(0)=y_{0}$
$y=e^{\wedge}-x 2\left(\int x 0 e^{\wedge}-t 2 d t+y 0\right)$
$y=e^{\wedge} x 2\left(\int x 0 e^{\wedge}-t 2 d t+y 0\right)$
$y=e^{\wedge} x 2\left(\int x 0 e^{\wedge t 2} d t-y 0\right)$
$y=\left(\int x 0 e^{\wedge}-t 2 d t+y 0\right)$

Solution

Let's rewrite the differential equation in the general form:

$$
y^{\prime}+p(x) y=g(x)
$$

Multiplying both sides by some function $\mu=\mu(x)$, so that the left side is a total derivative. Hence,

$$
\mu\left(y^{\prime}+p(x) y\right)=(\mu y)^{\prime}=\mu y^{\prime}+\mu^{\prime} y
$$

From this equation we get

$$
\begin{gathered}
\mu p(x) y=\mu^{\prime} y \\
\mu^{\prime}=\mu p(x)
\end{gathered}
$$

Integrating:

$$
\begin{gathered}
\mu(x)=e^{\int p(x) d x} \\
{\left[e^{\int p(x) d x} y\right]^{\prime}=e^{\int p(x) d x} g(x)} \\
e^{\int p(x) d x} y=\int g(x) e^{\int p(x) d x} d x
\end{gathered}
$$

Hence,

$$
y=e^{-\int p(x) d x} \int g(x) e^{\int p(x) d x} d x
$$

If having an IVP, we can rewrite the above equation as the following:

$$
y=e^{-\int_{x_{0}}^{x} \int p(\tau) d \tau}\left[\int_{x_{0}}^{x} g(\tau) e^{\int p(\tau) d \tau} d \tau+y_{0}\right]
$$

So now we can use this general solution for our IVP, as $p(x)=-2 x, g(x)=1, x_{0}=0$. Hence,

$$
y=e^{-\int_{0}^{x} \int-2 \tau d \tau}\left[\int_{0}^{x} e^{\int-2 \tau d \tau} d \tau+y_{0}\right]=e^{x^{2}}\left[\int_{0}^{x} e^{-\tau^{2}} d \tau+y_{0}\right]
$$

So, the correct answer is the second one from the list.
Answer: $y=e^{x^{2}}\left[\int_{0}^{x} e^{-\tau^{2}} d \tau+y_{0}\right]$.

