Answer on Question \#78993 - Math - Calculus

Question

Prove that $\frac{x}{1+x^{2}}<\arctan (x)<x$ for every $x>0$.

Proof

It is enough to show that $\frac{x}{1+x^{2}}<\arctan (x)$ and $\arctan (x)<x$ for every $x>0$.

1) Consider the function $f(x)=\arctan (x)-\frac{x}{1+x^{2}}, x \geq 0$. Note that f is continuous on $(0 ;+\infty)$ and for every $x>0$ there exists $f^{\prime}(x)$.
Since $f^{\prime}(x)=(\arctan (x))^{\prime}-\left(\frac{x}{1+x^{2}}\right)^{\prime}=\frac{1}{1+x^{2}}-\frac{1+x^{2}-2 x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{2 x^{2}}{\left(1+x^{2}\right)^{2}}>0$ for every $x>0$ and $f^{\prime}(0)=0$, from the monotonicity criterion, it follows that function f is strictly increasing on $[0 ;+\infty)$. It is also obvious that $f(0)=0$. This implies that $f(x)>f(0)=0$ for every $x>0$ which is equivalent to the next inequality:

$$
\arctan (x)-\frac{x}{1+x^{2}}>0, x>0 \leftrightarrow \arctan (x)>\frac{x}{1+x^{2}}, x>0
$$

2) Consider the function $g(x)=x-\arctan (x), x \geq 0$. Note that g is continuous on $(0 ;+\infty)$ and for every $x>0$ there exists $g^{\prime}(x)$.
Since $g^{\prime}(x)=(\mathrm{x})^{\prime}-(\arctan (x))^{\prime}=1-\frac{1}{1+x^{2}}=\frac{x^{2}}{1+x^{2}}>0$ for every $x>0$ and $g^{\prime}(0)=0$, from the monotonicity criterion, it follows that function g is strictly increasing on $[0 ;+\infty)$. It is also obvious that $g(0)=0$.
This implies that $g(x)>g(0)=0$ for every $x>0$ which is equivalent to the next inequality:

$$
x-\arctan (x)>0, x>0 \leftrightarrow x>\arctan (x), x>0
$$

From 1) and 2) we have the required statement.

