Answer on Question \#78966 - Math - Calculus
If $x * \sin (y)=\sin (p+y), p$ belongs to R,
show that $\sin (\mathrm{p})^{*} \mathrm{dy} / \mathrm{dx}+\sin ^{\wedge} 2(\mathrm{y})=0$.
Solution
Given that $x * \sin (y)=\sin (p+y) \Rightarrow x=\frac{\sin (p+y)}{\sin (y)}$.

Now differentiating both side of equation,
we get $\frac{d x}{d y}=\frac{\sin (y) * \cos (p+y)-\sin (p+y) * \cos (y)}{\sin ^{2}(y)}=\frac{\sin (y-(p+y))}{\sin ^{2}(y)}=\frac{\sin (-p)}{\sin ^{2}(y)}=-\frac{\sin (p)}{\sin ^{2}(y)}$.
If simplify to the linear equation, we get the proofing identity :

$$
\begin{aligned}
& -\sin (p) * \frac{d y}{d x}=\sin ^{2}(y) \\
& \sin ^{2}(y)+\sin (p) * \frac{d y}{d x}=0
\end{aligned}
$$

Proved. Problem is done

