Answer on Question \#78965 - Math - Calculus
 Question

Given an example of a function which is not integrable on $[0, \pi]$. Justify your answer.

Solution

Consider
$f(x)=\left\{\begin{array}{l}0, x \in \mathbb{Q}, \\ 1, x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$
where \mathbb{Q} is the set of all rational numbers.
Then for any partition
$0=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=\pi$
we may obtain integral sum
$\sum_{i=0}^{n-1} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)=\sum_{i=0}^{n-1} 0 \cdot\left(x_{i+1}-x_{i}\right)=0$ (if we take all rational t_{i})
or
$\sum_{i=0}^{n-1} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)=\sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) \neq 0$ (if we take all irrational t_{i})
This means that the limit of such sums doesn't exist because the limit of integral sum will depend on the choice of partition. The function $f(x)$ is not integrable.

Answer: $f(x)=\left\{\begin{array}{l}0, x \in \mathbb{Q}, \\ 1, x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$

