Answer on Question \#78904 - Math - Calculus

Question

1. Rolle's theorem is applicable for the function f, defined by $f(x)=1+x^{\wedge}(2 / 3)$ in the interval $[-1,1]$. Is the statement true or false? Give reason in support of your answers.

Solution

1. Rolle's theorem states that if a function f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b) such that $f(a)=f(b)$, then $f^{\prime}(x)=0$ for some x with $a \leq x \leq b[1]$.
2. Properties of function $f(x)=1+x^{\frac{2}{3}}$

Graph $1 \bigcirc f(x)=1+x^{\frac{2}{3}} ; \bigcirc f^{\prime}(x)=\frac{2}{3} \cdot x^{-\frac{1}{3}} ; \bigcirc x=-1$;
○ $x=1[2]$.

As you can see from the graph, $f(-1)=f(1)$.

The condition of continuous function is satisfied:

$$
\lim _{x \rightarrow 0}\left(1+x^{\frac{2}{3}}\right)=\left(1+0^{\frac{2}{3}}\right)=0
$$

But the condition of differentiable function on $(-1,1)$ is not valid. Besides,

$$
f^{\prime}(x)=\frac{2}{3} \cdot x^{-\frac{1}{3}} \neq 0, x \in[-1,1] \quad \text { (from the graph). }
$$

3. Conclusion: Rolle`s theorem is not applicable for the function f, defined by $f(x)=1+x^{\wedge}(2 / 3)$ on the interval $[-1,1]$.

Answer: the statement is false.

Sources

1. William L. Hosch ENCYCLOPÆDIA BRITANNICA// Rolle's theorem|MATHEMATICS (https://www.britannica.com/science/rolles-theorem)
2. https://www.symbolab.com/graphing-calculator
