Answer on Question #78893 — Math — Differential Equations

Question
Reduce the following PDE to a set of three ODEs by the method of separation of
variables
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Divide through by V:
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In the above equation the left-hand side depends on r and 8, while the right-hand
side depends on z. The only way these two members are going to be equal for all
values of r, 8 and z is when both of them are equal to a constant. Let us define
such a constant as —[2.

With this choice for the constant, we obtain:

The general solution of this equation is:

Z(z) = a,e¥? + aye
Such a solution, when considering the specific boundary conditions, will allow
Z(z) to go to zero for z going to +oo, which makes physical sense. If we had given
the constant a negative value, we would have had periodic trigonometric functions,
which do not tend to zero for z going to infinity.
Once sorted the z-dependency, we need to take care of r and 6.

L(1\dR 1d°R 11\(d’6\ _ , ,
E(?)EWWW(?)(W) =+
rdR 1?d*’R 12 4 2Y,2 = 1/d?*e
Rar TRz T DT = ‘5(@

Again we are in a situation where the only way a solution can be found for the
above equation is when both members are equal to a constant. This time we select

a positive constant, which we call m2. The equation for @ becomes, then:
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Its general solution can be written as:

©(08) = b, sin(m8) + b, cos(mb)

This solution is well suited to describe the variation for an angular coordinate like
6. Had we chosen to set both members of equation equal to a negative number, we
would have ended up with exponential functions with a different value assigned to
0 (6) for each 360 degrees turn, a clear non-physical solution.

Last to be examined is the r-dependency. We have:
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The equation (*) is a well-known equation of mathematical physics called
parametric Bessel’s equation. With a simple linear transformation of variable, x =

(Vk? + 1?)r, equation (*) is readily changed into a Bessel’s equation:
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where R and R’ indicate the first and the second derivatives with respect to x.
In what follows we will assume that m is a real, non-negative number.
Linearly independent solutions are typically denoted /,,,(x) (Bessel Functions) and

N, (x) (Neumann Functions).
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