Answer on Question \#78888 - Math - Calculus

Question

Trace the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$. State the properties you use for tracing it also.

Solution

We use the following properties for tracing the curve:
We have the Cartesian curve defined by the parametric equations $x=f(\theta)$, $y=g(\theta)$. Since y is a periodic function of θ with period 2π, it is sufficient to trace the curve for $\theta \in[0,2 \pi]$.
For $\theta \in[0,2 \pi], x$ and y are well defined.
Trace the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta) ; 0 \leq \theta \leq 2 \pi ; a>0$.

1. Symmetry
$x=f(\theta)=a(\theta-\sin \theta)$;
$y=g(\theta)=a(1-\cos \theta)$
$f(-\theta)=a(-\theta-\sin (-\theta))=-f(\theta)$;
$g(-\theta)=a(1-\cos (-\theta))=g(\theta)$.
Therefore, the curve is symmetrical about the y-axis.
Curve is not symmetrical about y - axis.
Curve is not symmetrical about the line $y=x$.
Curve is not symmetrical about the line $y=-x$.
Curve is not symmetrical in opposite quadrants.
2. Origin
$(0,0): x=f(\theta)=a(\theta-\sin \theta)=0, y=g(\theta)=a(1-\cos \theta)=0$
$\left\{\begin{array}{l}a(\theta-\sin \theta)=0 \\ a(1-\cos \theta)=0\end{array}=>\left\{\begin{array}{l}\theta-\sin \theta=0 \\ 1-\cos \theta=0\end{array}=>\left\{\begin{array}{l}\sin \theta=\theta \\ \cos \theta=1\end{array}=>\right.\right.\right.$
$=>\left\{\begin{array}{c}\sin \theta=\theta \\ \theta=0 \text { or } \theta=2 \pi\end{array}=>\theta=0\right.$
A curve passes through the origin.
Derivatives:
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \sin \theta}{a(1-\cos \theta)}=\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}}=\cot \frac{\theta}{2}$
At $\theta=0, d y / d x=\infty$. Tangent to the curve at $\theta=0$ is perpendicular to x-axis.

3. Intercepts

Intersection with x-axis: The points of intersection of the curve with the x - axis are given by the roots of $g(\theta)=0,0 \leq \theta \leq 2 \pi ; a>0$.
$a(1-\cos \theta)=0$
$\cos \theta=1$
$\theta=0$ or $\theta=2 \pi$
$f(0)=a(0-\sin (0))=0$
$f(2 \pi)=a(2 \pi-\sin 2 \pi)=2 \pi a$
$\operatorname{Point}(0,0), \operatorname{Point}(2 \pi, 0)$
Intersection with y-axis: The points of intersection of the curve with the y - axis are given by the roots of $f(\theta)=0,0 \leq \theta \leq 2 \pi ; a>0$.
$f(\theta)=0=>a(\theta-\sin \theta)=0,0 \leq \theta \leq 2 \pi ; a>0$.
$\theta-\sin \theta=0$
$\theta=0$
$\operatorname{Point}(0,0)$
$g(\theta)=0=>a(1-\cos \theta)=0,0 \leq \theta \leq 2 \pi ; a>0$.
$\theta=0, \quad \theta=2 \pi$
$f(0)=a(0-\sin (0))=0$
$f(2 \pi)=a(2 \pi-\sin 2 \pi)=2 \pi a$

4. Asymptotes

$x=a(\theta-\sin \theta), y=a(1-\cos \theta)$
There is no vertical asymptote.
There is no horizontal asymptote.
There is no oblique asymptote.
5. Regions where no Part of the curve lies

Note that $y \geq 0$. Entire curve lies above the y-axis $(0 \leq y \leq 2 a)$.
6. First derivative
$x=a(\theta-\sin \theta), y=a(1-\cos \theta)$
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \sin \theta}{a(1-\cos \theta)}=\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}}=\cot \frac{\theta}{2}$
At $\theta=0, d y / d x=\infty$. Tangent to the curve at $\theta=0$ is perpendicular to x-axis.

At $\theta=\pi, d y / d x=0$. Tangent to the curve is parallel to x-axis at $\theta=\pi$.
At $\theta=2 \pi, d y / d x=\infty$. Tangent to the curve is again perpendicular to x-axis at $\theta=2 \pi$.

For $0<\theta<\pi, \frac{d y}{d x}>0$.
Therefore, the function $y(x)$ is increasing in this interval.
For $\pi<\theta<2 \pi, \frac{d y}{d x}<0$.
Therefore, the function $y(x)$ is decreasing in this interval.
7. Second derivative
$x=a(\theta-\sin \theta), y=a(1-\cos \theta)$
$\frac{d y}{d x}=\cot \frac{\theta}{2}$
$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d \theta}\left(\frac{d y}{d \theta}\right)}{\frac{d x}{d \theta}}=\frac{-\frac{1}{2 \sin ^{2} \frac{\theta}{2}}}{a(1-\cos \theta)}=-\frac{1}{4 \sin ^{2} \frac{\theta}{2}}$
For $0<\theta<2 \pi, \frac{d^{2} y}{d x^{2}}<0=>$ concave downward.

θ	0	$\pi / 2$	π	$3 \pi / 2$	2π
x	0	$a(\pi / 2-1)$	$a \pi$	$a(3 \pi / 2+1)$	$2 a \pi$
y	0	a	$2 a$	a	0
$d y / d x$	∞	1	0	-1	∞

