Answer on Question #78867 – Math – Calculus

Question

For which value(s) of k, is the function f, defined as below, continuous at x =2? f(x)={3-kx, 1less than equal x<2 { $x^2/4 - 3$, x greater than equal 2

Further, at which other points in [1, infinity[is continuous, and why?

Solution

Function f(x) is continuous at x=2 if:

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) \to \lim_{x \to 2^{-}} (3 - kx) = \lim_{x \to 2^{+}} (\frac{x^{2}}{4} - 3) \to$$
$$\to \quad 3 - 2k = \frac{4}{4} - 3 \to k = \frac{5}{2}.$$

Functions 3 - kx and $\frac{x^2}{4} - 3$ are continuous on $(-\infty, \infty)$, so f(x) is continuous on $[1, \infty)$.

Answer provided by https://www.AsignmentExpert.com