Answer on Question \#78867 - Math - Calculus

Question

For which value(s) of k, is the function f, defined as below, continuous at $x=2$?
$\mathrm{f}(\mathrm{x})=\{3-\mathrm{kx}$, 1less than equal $\mathrm{x}<2$
$\left\{x^{\wedge} 2 / 4-3, x\right.$ greater than equal 2

Further, at which other points in [1, infinity[is continuous, and why?

Solution

Function $f(x)$ is continuous at $x=2$ if:

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x) \rightarrow \lim _{x \rightarrow 2^{-}}(3-k x)=\lim _{x \rightarrow 2^{+}}\left(\frac{x^{2}}{4}-3\right) \rightarrow \\
& \rightarrow 3-2 k=\frac{4}{4}-3 \rightarrow k=\frac{5}{2} .
\end{aligned}
$$

Functions $3-k x$ and $\frac{x^{2}}{4}-3$ are continuous on $(-\infty, \infty)$, so $f(x)$ is continuous on $[1, \infty)$.

