Answer on Question #78834 - Math - Statistics and Probability

Question

The breaking strengths of cables produced by manufacturer have a mean of 1800 Kg and a standard deviation of 100 Kg. by a new technique in the manufacturing process, it is claimed that breaking strength can be increased. To test this claim, a sample of 50 cables is tested and it is found that the mean breaking strength is 1850Kg. can we support the claim at the 0.01 significance level?

Solution

We need check the hypothesis

$$H_0$$
: $\mu = 1800$ vs. H_a : $\mu > 1800$

We use the z-test (n > 30):

$$z_0 = \frac{\mu - \mu_0}{\sigma / \sqrt{n}} = \frac{1850 - 1800}{100 / \sqrt{50}} \approx 3.54$$

$$z_{cr} = z_{0.99} = 2.33$$

Since $z_0 > z_{cr}$ then we reject H_0 and we conclude that a new technique can improve the break strength.

Answer: we reject H_0 and we conclude that a new technique can improve the break strength.