Answer on Question #78593 – Math – Analytic Geometry

Question

Trace the surface

$$\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{4} = 1$$

Also describe its sections by the planes $x = \pm 2$, algebraically and geometrically.

Solution

One-sheeted hyperboloid. To determine the xy -trace, set z = 0 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ the xy - trace is the ellipse To determine the xz -trace, set y = 0 $\frac{x^2}{4} - \frac{z^2}{4} = 1$ the xz - trace is the hyperbola To determine the yz -trace, set x = 0 $\frac{y^2}{9} - \frac{z^2}{4} = 1$ the yz - trace is the hyperbola = 1

The section of the hyperboloid by the plane x = -2 $\frac{(-2)^2}{4} + \frac{y^2}{9} - \frac{z^2}{4} = 1$ $\frac{y^2}{9} - \frac{z^2}{4} = 0$ $\left(\frac{y}{3} - \frac{z}{2}\right)\left(\frac{y}{3} + \frac{z}{2}\right) = 0$ Two lines: $y = -\frac{3}{2}z$ and $y = \frac{3}{2}z$. The section of the hyperboloid by the plane x = 2 $\frac{2^2}{4} + \frac{y^2}{9} - \frac{z^2}{4} = 1$ $\frac{y^2}{9} - \frac{z^2}{4} = 0$ $\left(\frac{y}{3} - \frac{z}{2}\right)\left(\frac{y}{3} + \frac{z}{2}\right) = 0$ Two lines: $y = -\frac{3}{2}z$ and $y = \frac{3}{2}z$.

Answer provided by https://www.AssignmentExpert.com