Answer on Question \#77049 - Math - Calculus

Question

The top and bottom margins of a poster are each 6 cm , and the side margins are each 4 cm . If the area of the printed material on the poster (that is, the area between the margins) is fixed at $384 \mathrm{~cm}^{\wedge} 2$, find the dimensions of the poster with the smallest total area.

Solution

Let x be the length of the poster in cm, y be the width of the poster in cm . Then the area of the poster

$$
\begin{equation*}
A=x y \tag{*}
\end{equation*}
$$

The area of the printed material on the poster

$$
A_{p r}=(x-2(4))(y-2(6))=384
$$

Solve the equation for y

$$
\begin{aligned}
& y-12=\frac{384}{x-8} \\
& y=12+\frac{384}{x-8}
\end{aligned}
$$

Substitute into (*)

$$
A=x\left(12+\frac{384}{x-8}\right)
$$

We see that the area of the poster is the function on x

$$
A=A(x)=12 x+\frac{384 x}{x-8}, x>8
$$

Find the first derivative with respect to x
$\frac{d A}{d x}=\frac{d}{d x}\left(12 x+\frac{384 x}{x-8}\right)=12+384 \frac{(x)^{\prime}(x-8)-(x-8)^{\prime}(x)}{(x-8)^{2}}=$
$=12+384 \frac{x-8-x}{(x-8)^{2}}=12-\frac{3072}{(x-8)^{2}}$

Find the critical number(s)
$\frac{d A}{d x}=0=>12-\frac{3072}{(x-8)^{2}}=0, x>8$
$(x-8)^{2}=256$
Since $x>8$, we take
$x-8=16$
$x=24$
$A(24)=12(24)+\frac{384(24)}{24-8}=864$
If $8<x<24, \frac{d A}{d x}<0, A(x)$ decreases
If $x>24, \frac{d A}{d x}>0, A(x)$ increases
The function $A(x)$ has a local minimum at $x=24$.
Since the function $A(x)$ has only one extrema on $(8, \infty)$, then the function $A(x)$ has the absolute minimum with value of 864 at $x=24$ on $(8, \infty)$.
Find y, when $x=24$
$y=12+\frac{384}{24-8}=36$
Answer: the given poster has the minimal area with value of $864 \mathrm{~cm}^{2}$ when its length is 24 cm and its width is 36 cm .

