Answer on Question \#76991 - Math - Calculus

Question

Find the dimensions of the rectangle of largest area that has its base on the x -axis and its other two vertices above the x -axis and lying on the parabola

$$
y=12-x^{2}
$$

Solution

See the figure 1 below:

Figure 1

The area of the inscribed rectangle equals

$$
A(x)=2 x\left(12-x^{2}\right)=24 x-2 x^{3} \text { for } 0 \leq x \leq 2 \sqrt{3}
$$

Calculate the derivative of the area function, and set it equal to zero.

$$
\begin{gathered}
A^{\prime}(x)=24-6 x^{2}=0 \\
x^{2}=4 \\
x=2
\end{gathered}
$$

As $A^{\prime}(x)>0$ for $0 \leq x<2$, and $A^{\prime}(x)<0$ for $2<x \leq 2 \sqrt{3}$, then $x=2$ is the maximum point of $A(x)$ and the rectangle has the largest area of 32 .

Length of the rectangle is $2 x=2 \cdot 2=4$; the height of the rectangle is $12-x^{2}=$ $12-2^{2}=8$.

Answer: The rectangle has the length 4 and the height of the rectangle is 8 .

For more details see an example in [1].

References:

1. http://www.math.tamu.edu/~stecher/151/Sp00/final.pdf
