We have equation of circle $(x-5)^{2}+y^{2}=25$, radius $=5$, center is in point $O(5,0)$

$$
\mathrm{A}=\left(x_{1}, y_{1}\right)=(8,-4), O(5,0)
$$

Find equation that passes through two points O and A :

$$
\begin{aligned}
& \frac{x-5}{8-5}=\frac{y-0}{4-0} \\
& -4(x-5)=3 y \\
& -4 x+20=3 y
\end{aligned}
$$

Then write equation in the standard form $A x+B y+C=0$

$$
-4 x-3 y+20=0
$$

The equation of the line that is tangent to the circle is the line that is perpendicular to the previous line, so the equation is $A\left(y-y_{1}\right)-B\left(x-x_{1}\right)=0$:

$$
\begin{gathered}
-4(y+4)+3(x-8)=0 \\
-4 y-16+3 x-24=0 \\
4 y=3 x-40 \\
y=\frac{3}{4} x-10
\end{gathered}
$$

