Answer on Question \#76989 - Math - Calculus

Question

A particle starts from rest (that is with initial velocity zero) at the point $x=10$ and moves along the x-axis with acceleration function $a(t)=12 t$. Find the resulting position function $x(t)$.

Solution

We have initial conditions: $x(t=0)=x_{0}=10 ; v(t=0)=v_{0}=0 ; a(t)=12 t$.
Definition of acceleration function:

$$
a(t)=\ddot{x}(t)=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t} .
$$

Definition of velocity function:

$$
v(t)=\dot{x}(t)=\frac{d x}{d t} .
$$

Let's find the velocity of a particle:

$$
v(t)=\int a(t) d t=\int 12 t d t=12 \frac{t^{2}}{2}+C_{1}=6 t^{2}+C_{1}
$$

Constant of integration C_{1} can be found from initial conditions:

$$
v(t=0)=6 \cdot 0+C_{1}=v_{0}=0 \Rightarrow C_{1}=0 .
$$

So we have

$$
v(t)=6 t^{2} .
$$

Let's find the position function:

$$
x(t)=\int v(t) d t=\int 6 t^{2} d t=6 \frac{t^{3}}{3}+C_{2}=2 t^{3}+C_{2}
$$

Constant of integration C_{2} we find from initial conditions:

$$
x(t=0)=2 \cdot 0+C_{2}=x_{0}=10 \Rightarrow C_{2}=10
$$

So the equation for position function:

$$
x(t)=2 t^{3}+10
$$

Answer provided by https://www.AssignmentExpert.com

