Answer on Question \#76986 - Math - Calculus

Question

Let C denote the circle whose equation is $(x-5)^{2}+y^{2}=25$. Notice that the point $(8 ;-4)$ lies on the circle C. Find the equation of the line that is tangent to C at the point $(8 ;-4)$.

Solution

Gradient of $C P=\frac{\text { rise }}{\text { run }}=\left[\begin{array}{c}\text { rice }=|P A|=-4 \\ \text { run }=|A C|=8-5=3\end{array}\right]=-\frac{4}{3}$
Gradient of the tangent $=-\frac{1}{\text { Gradient of } C P}=\frac{3}{4}$
Equation of a straight line: $y=m x+c$
$m=$ gradient of the tangent $=\frac{3}{4} \rightarrow y=\frac{3}{4} x+c$
A line goes through the point $(8 ;-4) \rightarrow c=y-\frac{3}{4} x=-4-\frac{3}{4} \cdot 8=-10$

Answer:

The equation of the line that is tangent to C at the point $(8 ;-4)$ is

$$
y=\frac{3}{4} x-10
$$

Answer provided by https://www.AssignmentExpert.com

