Answer on Question \#76861 - Math - Statistics and Probability
 Question

1. A discrete random variable can be described by the binomial distribution if it satisfies four conditions. State these FOUR (4) conditions.

Solution

The number of experiments n is fixed.
Each experiment is independent.
Each experiment represents one of two outcomes ("success" or "failure").
The probability of "success" p is the same for each outcome.

Question

2. The pass rate for a Statistics test in a class of MBA students is 65%. If five students are randomly selected from the class, determine the probability that at least two passed the test.

Solution

Using Binomial distribution:

$$
\begin{gathered}
n=5, p=0.65 \\
P(x \geq 2)=1-P(x<2)=1-P(x=0)-P(x=1) \\
P(x=0)=\frac{5!}{0!5!} \cdot 0.65^{0} \cdot 0.35^{5}=0.00525 \\
P(x=1)=\frac{5!}{1!4!} \cdot 0.65^{1} \cdot 0.35^{4}=0.04877
\end{gathered}
$$

Answer: $P(x \geq 2)=1-0.00525-0.04877=0.946$

Question

3. Explain why the areas for only positive z - values are given on a standard normal distribution table.

Solution

Since normal distribution curve is symmetrical, the areas under the curve:
area from 0 to $z=$ area from $-z$ to 0

So, it is no need to use two tables, for positive and negative z-values.

Question

4. The weight of a packet of imported biscuits from a shipment is normally distributed with a mean of 500 g and a standard deviation of 40 g . What percentage of packets of the shipment weighs between 540 g and 560 g ?

Solution

$$
\begin{gathered}
P(540<x<560)=P\left(\frac{540-500}{40}<z<\frac{560-500}{40}\right)=P(1<z<1.5)= \\
=P(z<1.5)-P(z<1)=0.9332-0.8413=0.0919
\end{gathered}
$$

