Answer on Question \#76845 - Math - Statistics and Probability

The management of a grocery store has kept a record of bad checks received per day for a period of 300 days.

Number of Bad Checks Received	Number of Days
0	12
1	15
2	35
3	55
4	63
5	35
6	38
7	32
8	15

Question

a) Develop a probability distribution for the above data.

Solution

Number of Bad Checks Received	Probability $p(x)$
0	$12 / 300=0.04$
1	$15 / 300=0.05$
2	$35 / 300=0.117$
3	$55 / 300=0.183$
4	$63 / 300=0.21$
5	$35 / 300=0.117$
6	$38 / 300=0.126$
7	$32 / 300=0.107$
8	$15 / 300=0.05$

Question
b) Is the probability distribution that you found in Part "a" a proper probability distribution? Explain.

Solution

This is a proper probability distribution since:

$$
p\left(x_{i}\right) \geq 0 \text { for all } x
$$

$$
\sum_{i=0}^{8} p\left(x_{i}\right)=1
$$

Question

c) Determine the cumulative probability distribution, $F(x)$.

Solution

$$
\begin{gathered}
F(x)=\sum_{i: x_{i} \leq x} p_{i} \\
F(0)=p(x=0)=0.04 \\
F(1)=p(x \leq 1)=0.04+0.05=0.09 \\
F(2)=p(x \leq 2)=0.04+0.05+0.117=0.27 \\
F(3)=p(x \leq 3)=0.04+0.05+0.117+0.183=0.39 \\
F(4)=p(x \leq 4)=0.39+0.21=0.6 \\
F(5)=p(x \leq 5)=0.6+0.117=0.717 \\
F(6)=p(x \leq 6)=0.717+0.126=0.843 \\
F(7)=p(x \leq 7)=0.843+0.107=0.95 \\
F(8)=p(x \leq 8)=1
\end{gathered}
$$

Question

d) What is the probability that in a given day the store receives four or less bad checks?

Solution

$$
p(x \leq 4)=F(4)=0.21+0.183+0.117+0.05+0.04=0.6
$$

Question

e) What is the probability that in a given day the store receives more than two bad checks?

Solution

$$
p(x>2)=1-p(x \leq 2)=1-0.04-0.05-0.117=0.793
$$

Question

f) What is the expected value of the number of checks received?

Solution

$$
\begin{gathered}
\mu=\sum_{i=0}^{8} p_{i} x_{i}=0.05+0.117 \cdot 2+0.183 \cdot 3+0.21 \cdot 4+0.117 \cdot 5+0.126 \cdot 6+0.107 \cdot 7+ \\
+0.05 \cdot 8=4.163
\end{gathered}
$$

Question

g) Compute the variance of the number of checks received.

> Solution
> $\operatorname{var}(x)=\sum_{i=0}^{8} p_{i} x_{i}^{2}-\mu^{2}=0.05+0.117 \cdot 4+0.183 \cdot 9+0.21 \cdot 16+0.117 \cdot 25+$ $+0.126 \cdot 36+0.107 \cdot 49+0.05 \cdot 64-4.163^{2}=4.098$

Question

h) Compute the standard deviation of number of checks received.

Solution

$$
\sigma=\sqrt{\operatorname{var}(x)}=\sqrt{4.098}=2.024
$$

