Answer on Question \#76830 - Math - Calculus

Question

The publishers of a business magazine are running a sales promotion for their weekly magazine. The number of prospective customers a sales representative sees per day varies from 1 to 40 . The table shows the simulated data of the number of prospective subscribers approached by a sales representative for 8 consecutive weeks.

Day	1	2	3	4	5	6	7
Week 1	20	22	27	17	31	12	39
Week 2	26	13	30	18	24	14	32
Week 3	21	12	22	37	30	23	18
Week 4	15	33	10	28	34	24	22
Week 5	11	33	21	32	26	19	22
Week 6	19	27	20	18	31	14	37
Week 7	29	22	27	30	16	09	36
Week 8	08	28	19	28	25	36	26

If the sales representative is able to get 20% of the prospective customers to subscribe, the maximum expected number of subscriptions per week is. If the sales representative earns $\$ 3$ per subscription in addition to daily wages, the minimum expected value of the extra income per week is .

Solution

Expected numbers of subscriptions per week are:
week $1: 0.2 \cdot(20+22+27+17+31+12+39)=33.6$
week $2: 0.2 \cdot(26+13+30+18+24+14+32)=31.4$
week $3: 0.2 \cdot(21+12+22+37+30+23+18)=32.6$
week $4: 0.2 \cdot(15+33+10+28+34+24+22)=33.2$
week $5: 0.2 \cdot(11+33+21+32+26+19+22)=32.8$
week 6: $0.2 \cdot(19+27+20+18+31+14+37)=33.2$
week 7: $0.2 \cdot(29+22+27+30+16+09+36)=31.8$
week 8: $0.2 \cdot(08+28+19+28+25+36+26)=34$

The maximum expected number of subscriptions per week: 34
The minimum expected value of the extra income per week:

$$
31.4 \cdot 3=94.2 \$
$$

