Answer on Question \#76669, Math / Calculus

A jogger runs from her home to a point A, which is 6 km away. For there 6 km , she begins by running at a constant speed till she reaches a hilly portion 2 km from her home. Here her speed slows down while she runs up the hill, which is a $1-\mathrm{km}$ run. Then she speeds up while running down the hill. The last 2 km of the run are again at constant speed. Draw a graph to show the jogger's speed as a function of the distance from her home. Also find the range of this function.
Solution
Divide the distance into 4 subintervals:
[0,2] - interval, where $V=V_{1}=$ const.
$[2,3]$ - interval, where V decreases from V_{1} to $V_{\min }$.
$[3,4]$ - interval, where V increases from $V_{\min }$ to V_{2}.
[4, 6] - interval, where $V=V_{2}=$ const.
How precisely does the velocity depend on the distance on the intervals $[2,3]$ and $[3,4]$?
Is V_{1} equal to V_{2}, greater then V_{2} or less than V_{2} ?
It is undefined.

The function $V(s)$ is constant on $(0,2)$, decreases on $(2,3)$, increases on $(3,4)$, and is constant on $(4,6)$.
Range: $\left[V_{\min }, \max \left(V_{1}, V_{2}\right)\right]$
Answer provided by https://www.AssignmentExpert.com

