## Answer on Question \#76637 - Math - Calculus Question

What is the maximum number of relative extrema contained in the graph of this function?

$$
f(x)=3 x^{3}-x^{2}+4 x-2
$$

## Solution

Since $f(x)$ is a polynomial function, the number of relative extrema is, at most, one less than the degree of the polynomial.
So, for this particular function, the number of relative extrema is 2 or less.
Find the first derivative with respect to $x$

$$
f^{\prime}(x)=\left(3 x^{3}-x^{2}+4 x-2\right)^{\prime}=3\left(3 x^{2}\right)-2 x+4(1)-0=9 x^{2}-2 x+4
$$

Find the critical numbers

$$
f^{\prime}(x)=0=>9 x^{2}-2 x+4=0
$$

Find the discriminant

$$
\begin{gathered}
D=(-2)^{2}-4(9)(4)=-140<0 \\
\text { coefficient }=9>0
\end{gathered}
$$

Since the discriminant is less than zero and coefficient is greater than zero the expression $9 x^{2}-2 x+4$ is positive for all real $x$.
The first derivative of the function exists in the set of real numbers and does not vanish. The function $f(x)=3 x^{3}-x^{2}+4 x-2$ has no relative extreme points.

