## Answer on Question \#76519 - Math - Algebra Question

1) Find the length of an arc of the curve given by $\mathrm{x}=\mathrm{a}$ (theta $-\sin$ theta), $\mathrm{y}=\mathrm{a}(1-\cos$ theta $)$, and
2) obtain the ratio in which theta $=\pi / 3$ divides it.

## Solution

We have
$\left\{\begin{array}{l}x=a(\theta-\sin \theta) \\ y=a(1-\cos \theta)\end{array}\right.$

1) If we draw the plot of this curve, we see that the arc has the origin in the point $\theta=0$ and the end in the point $\theta=2 \pi$.
We will find the length with formula:
$\mathrm{L}=\int_{\theta_{1}}^{\theta_{2}} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta$
$\frac{d x}{d \theta}=[a(\theta-\sin \theta)]^{\prime}=a^{\prime}(\theta-\sin \theta)+a\left[\theta^{\prime}-(\sin \theta)^{\prime}\right]=0+a(1-\cos \theta)=$ $a(1-\cos \theta)$
$\frac{d y}{d \theta}=[a(1-\cos \theta)]^{\prime}=a^{\prime}(1-\cos \theta)+a\left[1^{\prime}-(\cos \theta)^{\prime}\right]=a \sin \theta$
$\mathrm{L}=\int_{\theta_{1}}^{\theta_{2}} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta$, where $\theta_{1}=0$ and $\theta_{2}=2 \pi$
$\mathrm{L}=\int_{0}^{2 \pi} \sqrt{a^{2}(1-\cos \theta)^{2}+a^{2} \sin \theta^{2}} d \theta=$
$a \int_{0}^{2 \pi} \sqrt{1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta} d \theta=$
$=a \int_{0}^{2 \pi} \sqrt{2-2 \cos \theta} d \theta=a \int_{0}^{2 \pi} \sqrt{2(1-\cos \theta)} d \theta=a \int_{0}^{2 \pi} \sqrt{2\left(2 \sin ^{2} \frac{\theta}{2}\right)} d \theta=$
$=2 a \int_{0}^{2 \pi} \sin \frac{\theta}{2}=4 a\left(-\left.\cos \frac{\theta}{2}\right|_{0} ^{2 \pi}\right)=4 a(-\cos \pi+\cos 0)=4 a(1+1)=8 a$
So, $\mathrm{L}=8 \mathrm{a}$;
2) If $\theta=\frac{\pi}{3}$, the ratio in which $\theta$ divides the curve looks like:
$\frac{4 a\left(-\left.\cos \frac{\theta}{2}\right|_{0} ^{\frac{\pi}{3}}\right)}{4 a\left(-\left.\cos \frac{\theta}{2}\right|_{\frac{\pi}{3}} ^{2 \pi}\right)}=\frac{4 a\left(-\cos \frac{\pi}{6}+\cos 0\right)}{4 a\left(-\cos \pi+\cos \frac{\pi}{6}\right)}=\frac{-\frac{\sqrt{3}}{2}+1}{1+\frac{\sqrt{3}}{2}}=\frac{2-\sqrt{3}}{2+\sqrt{3}}$
Answer: 1) 8a; 2) $\frac{2-\sqrt{3}}{2+\sqrt{3}}$.
