Answer on Question \#76449, Math / Calculus
Let $f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$, if $x^{4}+y^{2} \neq 0$
Examine whether $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist or not.
Solution
Path $y=x$
$\lim _{(x, x) \rightarrow(0,0)} f(x, x)=\lim _{(x, x) \rightarrow(0,0)} \frac{x^{2}(x)}{x^{4}+x^{2}}=\lim _{(x, x) \rightarrow(0,0)} \frac{x}{x^{2}+1}=0$
Path $y=x^{2}$
$\lim _{\left(x, x^{2}\right) \rightarrow(0,0)} f\left(x, x^{2}\right)=\lim _{(x, x) \rightarrow(0,0)} \frac{x^{2}\left(x^{2}\right)}{x^{4}+x^{4}}=\lim _{(x, x) \rightarrow(0,0)} \frac{1}{2}=\frac{1}{2}$
We find two curves $y=x$ and $y=x^{2}$ along which the limit does not agree.
Since the two limits are not the same, we can conclude that

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y) \text { does not exist }
$$

Answer provided by https://www.AssignmentExpert.com

