Find the point on the ellipse, $\left(x^{\wedge} 2 / 4\right)+y^{\wedge} 2=1$
that is nearest to the origin.

Solution

We are dealing with the equation of the eclipse.

1) Rewrite x, y in polar coordinates: $x=r * \operatorname{Cos}[a], y=r * \operatorname{Sin}[a]$.

We are looking for minimal values of r^{2} (squared distance from the origin).
2) The equation now take a form: $r^{2} *\left(\frac{\operatorname{Cos}[a]^{2}}{4}+\operatorname{Sin}[a]^{2}\right)=1$,
so $r^{2}=\frac{1}{\operatorname{Cos}[a]^{2}+4 * \operatorname{Sin}[a]^{2}}=\frac{4}{1+3 * \operatorname{Sin}[a]^{2}}$ and is defined and differentiable for any angles from 0 to 2π.
3) To find the minimum differentiate $r^{2} \cdot \frac{d\left(r^{2}\right)}{d a}=\frac{-24 * \operatorname{Sin}[a] * \operatorname{Cos}[a]}{\left(1+3 * \operatorname{Sin}[a]^{2}\right)^{2}}$.

Its derivative has zeroes at $0, \frac{\pi}{2}, \pi$ and $\frac{3 \pi}{2}$. The minimal value of r^{2} should be at one or several points from this list.
4)

$$
\begin{aligned}
& r^{2}(0)=4 \\
& r^{2}\left(\frac{\pi}{2}\right)=1 \\
& r^{2}(\pi)=4 \\
& r^{2}\left(\frac{3 \pi}{2}\right)=1
\end{aligned}
$$

So we see that the same minimal value take place at $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$, which corresponds to $(0,1)$ and $(0,-1)$.

Answer: (0,1) $O R(0,-1)$.
Answer provided by https://www.AssignmentExpert.com

