Question #76446, Math / Calculus

Find the point on the ellipse, $(x^2/4)+y^2=1$ that is nearest to the origin.

Solution

We are dealing with the equation of the eclipse.

1) Rewrite x,y in polar coordinates: x = r * Cos[a], y = r * Sin[a].

We are looking for minimal values of r^2 (squared distance from the origin).

2) The equation now take a form: $r^2 * \left(\frac{Cos[a]^2}{4} + Sin[a]^2\right) = 1$,

so $r^2 = \frac{1}{\cos[a]^2 + 4*\sin[a]^2} = \frac{4}{1 + 3*\sin[a]^2}$ and is defined and differentiable for any angles from 0 to 2π .

3) To find the minimum differentiate $r^2 \cdot \frac{d(r^2)}{da} = \frac{-24 * Sin[a] * Cos[a]}{(1+3*Sin[a]^2)^2}$. Its derivative has zeroes at 0, $\frac{\pi}{2}$, π and $\frac{3\pi}{2}$. The minimal value of r^2 should be at one or several points from this list.

4) $r^{2}(0) = 4,$ $r^{2}\left(\frac{\pi}{2}\right) = 1,$ $r^{2}(\pi) = 4,$ $r^{2}\left(\frac{3\pi}{2}\right) = 1.$

So we see that the same minimal value take place at $\frac{\pi}{2}$ and $\frac{3\pi}{2}$, which corresponds to (0,1) and (0, -1).

Answer: (0,1) *OR* (0,-1).

Answer provided by https://www.AssignmentExpert.com