Answer on Question \#76438 - Math - Calculus

Question

Find the value of a, b, c such that $\lim _{x \rightarrow \infty} \frac{a e^{x}+b \cos x+c e^{-x}}{x \sin x}=\frac{3}{2}$.

Conjecture

$$
\lim _{x \rightarrow \infty} \frac{a e^{x}+b \cos x+c e^{-x}}{x \sin x} \neq \frac{3}{2} \text { for any } a, b, c \in R .
$$

Proof (by contradiction)

Let $f(x)=\frac{a e^{x}+b \cos x+c e^{-x}}{x \sin x}$.
Suppose that above-mentioned limit exists and $\lim _{x \rightarrow \infty} f(x)=\frac{3}{2}$ then according to the definition of a limit of the function by Eduard Heine

$$
\forall\left\{x_{n}\right\}_{n=1}^{\infty}: \lim _{n \rightarrow \infty} x_{n}=\infty=>\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\frac{3}{2}
$$

Let's consider $\quad x_{n}=\frac{\pi}{2}+2 \pi n$;
$f\left(x_{n}\right)=\frac{a e^{\left(\frac{\pi}{2}+2 \pi n\right)}+c e^{-\left(\frac{\pi}{2}+2 \pi n\right)}}{\frac{\pi}{2}+2 \pi n} ;$
$\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} \frac{a e^{\left.-\frac{\pi}{2}+2 \pi n\right)}+c e^{-\left(\frac{\pi}{2}+2 \pi n\right)}}{\frac{\pi}{2}+2 \pi n}=\left\{\begin{array}{c}a \cdot(+\infty), a \neq 0 \\ 0, a=0\end{array}\right.$
because of the fact that
$\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=[$ according to the Hospital's rule $]=\lim _{x \rightarrow+\infty} \frac{\left(e^{x}\right) \prime}{x^{\prime}}=\lim _{x \rightarrow+\infty} e^{x}=+\infty$.
Here is the contradiction
Answer: $\quad \lim _{x \rightarrow \infty} \frac{a e^{x}+b \cos x+c e^{-x}}{x \sin x} \neq \frac{3}{2}$ for any $a, b, c \in R$.

