Answer on Question \#76428 - Math - Calculus

Question

Show that for two scale field f and $\mathrm{g}: \nabla \times(\mathrm{f} \nabla \mathrm{g})+\nabla \times(\mathrm{g} \nabla \mathrm{f})=0$.

Solution

The gradient of the product of two scalar fields:

$$
\nabla(f \cdot g)=g \nabla f+f \nabla g
$$

then:

$$
\nabla \times(f \nabla g)=\nabla \times(\nabla(f \cdot g)-g \nabla f)=\nabla \times(\nabla(f \cdot g))-\nabla \times(g \nabla f)
$$

The curl of the gradient of any scalar field is always the zero vector field:

$$
\nabla \times(\nabla(f \cdot g))=0
$$

then

$$
\nabla \times(f \nabla g)+\nabla \times(g \nabla f)=\nabla \times(\nabla(f \cdot g))-\nabla \times(g \nabla f)+\nabla \times(g \nabla f)=\nabla \times(\nabla(f \cdot g))=0
$$

