Answer to Question \#75762 - Math - Statistics and Probability Question

Verify that $\mathrm{f}(\mathrm{x})=\mathrm{x} / 8$ can serve as the probability density function of a continuous random variable which can take on any value in the interval from 0 to 4.

Solution

If $\mathrm{f}(\mathrm{x})$ is a nonnegative function such that $\int_{R} f(x) d x=1$, then there exists an absolutely continuous random variable P in R such, that $\mathrm{f}(\mathrm{x})$ is its density function.

Consequently, we have to prove that $\mathrm{f}(\mathrm{x})$ is a nonnegative function and $\int_{R} f(x) d x=1$

1) $f(x)=\frac{x}{8}$ where x belongs to $(0,4) \Rightarrow>f(x)$ takes on values in the interval $\left(0, \frac{1}{2}\right)=>f(x)$ is a nonnegative function.
2) $\int_{R} f(x) d x=\int_{0}^{4} \frac{x}{8} d x=\left.\frac{x^{2}}{16}\right|_{x=4}-\left.\frac{x^{2}}{16}\right|_{x=0}=\frac{16}{16}-\frac{0}{16}=1-0=1$

We showed the fulfillment of both sufficiency conditions, hence we proved that $f(x)$ can serve as the probability density function of a continuous random variable.

