QUESTION

Trace the curve

$$
\left\{\begin{array}{l}
x=a(\theta-\sin \theta) \\
y=a(1-\cos \theta)
\end{array}\right.
$$

State the properties used for tracing it.

SOLUTION

We use the following properties for tracing the curve.
We have the Cartesian curve defined by the parametric equations

$$
l:\left\{\begin{array}{l}
x=f(\theta) \\
y=g(\theta)
\end{array}\right.
$$

Since $y=g(\theta)$ is a periodic function of θ with period 2π, it is sufficient to trace the curve for $\theta \in[0 ; 2 \pi]$.

For $\theta \in[0 ; 2 \pi], x$ and y are well defined.
Trace the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta) ; 0 \leq \theta \leq 2 \pi ; a>0$.

1. Symmetry

$$
\left\{\begin{array}{l}
x=f(\theta)=a(\theta-\sin \theta) \\
y=g(\theta)=a(1-\cos \theta)
\end{array}\right.
$$

$f(-\theta)=a(-\theta-\sin (-\theta))=a(-\theta-[-\sin \theta])=a(-\theta+\sin \theta)=-a(\theta-\sin \theta)=f(\theta)$

$$
\begin{gathered}
f(-\theta)=f(\theta) \\
g(-\theta)=a(1-\cos (-\theta))=a(1-\cos \theta)=g(\theta) \\
g(-\theta)=g(\theta)
\end{gathered}
$$

Therefore, the curve is symmetrical about the y-axis.

Curve is not symmetrical about x-axis.
Curve is not symmetrical about the line $y=x$.
Curve is not symmetrical about the line $y=-x$.
Curve is not symmetrical in opposite quadrants.
2. Origin $(0,0)$

$$
\begin{gathered}
\left\{\begin{array} { l }
{ x = 0 } \\
{ y = 0 }
\end{array} \rightarrow \left\{\begin{array} { l }
{ a (\theta - \operatorname { s i n } \theta) = 0 } \\
{ a (1 - \operatorname { c o s } \theta) = 0 }
\end{array} \rightarrow \left\{\begin{array} { l }
{ \theta - \operatorname { s i n } \theta = 0 } \\
{ 1 - \operatorname { c o s } \theta = 0 }
\end{array} \rightarrow \left\{\begin{array} { l }
{ \operatorname { s i n } \theta = \theta } \\
{ \operatorname { c o s } \theta = 1 }
\end{array} \rightarrow \left\{\begin{array}{c}
\sin \theta=\theta \\
\theta=0 \text { or } \theta=2 \pi
\end{array} \rightarrow\right.\right.\right.\right.\right. \\
\theta=0
\end{gathered}
$$

Conclusion,
A curve passes through the origin
3. Intercepts

Intersection with x-axis: The points of intersection of the curve with the x-axis are given by the roots of

$$
\begin{aligned}
& a(1-\cos \theta)=0,0 \leq \theta \leq 2 \pi ; a>0 \\
& 1-\cos \theta=0 \rightarrow \cos \theta=1 \rightarrow\left[\begin{array}{c}
\theta=0 \\
\theta=2 \pi
\end{array}\right.
\end{aligned}
$$

We find the x-coordinates of the intersection points

$$
\begin{gathered}
\theta=0 \rightarrow x=a(0-\sin 0)=a \cdot 0=0 \\
(0,0)-\text { first intersection point } \\
\theta=2 \pi \rightarrow x=a(2 \pi-\sin (2 \pi))=a \cdot 2 \pi=2 \pi a \\
(2 \pi a, 0)-\text { second intersection point }
\end{gathered}
$$

Intersection with y-axis: The points of intersection of the curve with the y-axis are given by the roots of

$$
\begin{aligned}
& a(\theta-\sin \theta)=0,0 \leq \theta \leq 2 \pi ; a>0 \\
& \theta-\sin \theta=0 \rightarrow \sin \theta=\theta \rightarrow \theta=0
\end{aligned}
$$

We find the y-coordinates of the intersection points

$$
\begin{gathered}
\theta=0 \rightarrow y=a(1-\cos 0)=a \cdot(1-1)=a \cdot 0=0 \\
(0,0)-\text { first intersection point }
\end{gathered}
$$

4. Asymptotes

$$
\left\{\begin{array}{l}
x=a(\theta-\sin \theta) \\
y=a(1-\cos \theta)
\end{array}-\text { is well defined functions for all } \theta \in[0,2 \pi]\right.
$$

There is no vertical asymptote.

There is no horizontal asymptote.
There is no oblique asymptote.
5. Regions where no Part of the curve lies

$$
\left\{\begin{array}{l}
x=a(\theta-\sin \theta) \\
y=a(1-\cos \theta)
\end{array}\right.
$$

Note that $y \geq 0$. Entire curve lies above the x-axis $(0 \leq y \leq 2 a)$.
6. First derivative

$$
\begin{gathered}
\left\{\begin{array}{l}
x=a(\theta-\sin \theta) \\
y=a(1-\cos \theta)
\end{array}\right. \\
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \cdot \sin \theta}{a(1-\cos \theta)}=\frac{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)}{2 \sin ^{2}\left(\frac{\theta}{2}\right)}=\frac{\cos \left(\frac{\theta}{2}\right)}{\sin \left(\frac{\theta}{2}\right)}=\cot \left(\frac{\theta}{2}\right)
\end{gathered}
$$

At $\theta=0 \rightarrow{ }^{d y} / d x=\infty$. Tangent to the curve is perpendicular to x-axis at $\theta=0$.
At $\theta=\pi \rightarrow d y / d x=0$. Tangent to the curve is parallel to x-axis at $\theta=\pi$.
At $\theta=2 \pi \rightarrow{ }^{d y} / d x=\infty$. Tangent to the curve is perpendicular to x-axis at $\theta=2 \pi$.
For $0<\theta<\pi,{ }^{d y} / d x>0$.
Therefore, the function $y(x)$ is increasing in this interval.
For $\pi<\theta<2 \pi,{ }^{d y} / d x<0$.
Therefore, the function $y(x)$ is decreasing in this interval.
7. Second derivative.

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
x=a(\theta-\sin \theta) \\
y=a(1-\cos \theta)
\end{array}\right. \\
a>0
\end{array}\right\} \begin{gathered}
-\frac{1}{2 \sin ^{2}\left(\frac{\theta}{2}\right)} \\
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d \theta}\left(\frac{d y}{d \theta}\right)}{\frac{d x}{d \theta}}=\frac{-\frac{1}{2 \sin ^{2}\left(\frac{\theta}{2}\right)}}{a(1-\cos \theta)}=-\frac{1}{a \cdot 2 \sin ^{2}\left(\frac{\theta}{2}\right)}=0
\end{gathered}
$$

For $0<\theta<2 \pi,,^{2} y / d x^{2}<0 \rightarrow$ concave downward.

θ	0	$\pi / 2$	π	$3 \pi / 2$	2π
x	0	$a(\pi / 2-1)$	$a \pi$	$a(3 \pi / 2+1)$	$2 a \pi$
y	0	a	$2 a$	a	0
$d y / d x$	∞	1	0	-1	∞

