Answer on Question \#75633 - Math - Discrete Mathematics

Consider the function f.
Let's denote the set $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ as set A and the set $\{1,2,3\}$ as set B. Then function f is a mapping $f: A \rightarrow B, f(a)=2, f(b)=3, f(c)=1$.
a) f is an injective function (f is an "into" function) because for $\forall m, n \in A: m \neq n f(m) \neq f(n)$.
b) f is a surjective mapping (f is an "onto" function), because $f(A)=B$.
c) f is an injective mapping and f is an surjective mapping, therefore f is a bijective mapping. Then there is an inverse mapping $f^{-1}: B \rightarrow A$, which can be defined as follows:

$$
\forall y \in B \exists!x \in A: f(x)=y . \text { Then } x=f^{-1}(y)
$$

As a result, $a=f^{-1}(2), b=f^{-1}(3), c=f^{-1}$ (1).

