Answer on Question \#75565 - Math - Calculus

Question

The hyperboloid of one sheet is

$$
S=\left\{(x, y, z) \in R^{3} \mid x^{2}+y^{2}-z^{2}=1\right\}
$$

Show that for every θ, the straight line

$$
(x-z) \cos \theta=(1-y) \sin \theta,(x+z) \sin \theta=(1+y) \cos \theta
$$

is contained in S and that every point of hyperboloid lies on one of these lines. Deduce that S can be covered by a single surface patch, and hence is a surface.

Solution

Multiplying two equations of lines we get:

$$
\begin{aligned}
&(x-z) \cos \theta(x+z) \sin \theta=(1-y) \sin \theta(1+y) \cos \theta \\
&(x-z)(x+z)=(1-y)(1+y) \\
& x^{2}-z^{2}=1-y^{2} \\
& x^{2}+y^{2}-z^{2}=1
\end{aligned}
$$

So, the line is contained in S and every point of hyperboloid lies on one of the given lines.
The Jacobian of $f(x, y, z)=x^{2}+y^{2}-z^{2}-1$ is $(0,0)$ only in $(0,0)$ so it is a smooth surface. You can move the lines continuously to go from a point $p \in S$ to any point q so it is a single surface patch.

