Answer on Question \#75438 - Math - Discrete Mathematics

Question

A committee of three is chosen from a group of 20 people. How many different committees are possible, if
(a) the committee consists of a president, vice president, and treasurer?
(b) there is no distinction among the three members of the committee?

Solution

(a) The number of arrangements without repetitions is equal to the number of k-combinations multiplied by the number of permutations between them $C_{n}^{k} \cdot k!=\frac{n!}{k!(n-k)!} \cdot k!=\frac{n!}{(n-k)!}$.
In our case $n=20 ; k=3 ; \frac{20!}{17!}=18 \cdot 19 \cdot 20=6840$.
(b) A k-combination of a set S is a subset of k distinct elements of S. If the set has n elements, then the number of k-combinations is equal to the binomial coefficient: $C_{n}^{k}=\frac{n!}{k!(n-k)!}$.
In our case $n=20 ; k=3 ; C_{20}^{3}=\frac{20!}{3!\cdot 17!}=\frac{18 \cdot 19 \cdot 20}{6}=1140$.
Answer: (a) 6840; (b) 1140.

