Answer on Question \#75432 - Math - Calculus Question

$f(x, y)=5 x y-\ln (x y)-5$, check whether there exists a continuously differentiable function g defined by $f(x, y)=0$ in the neighbourhood of $x=3$, such that $g(3)=1 / 3$. Find $g^{\prime}(3)$ if exists.

Solution

We have

$$
f(x, y)=5 x y-\ln (x y)-5=0
$$

Then

$$
f\left(3, \frac{1}{3}\right)=5 \cdot 3 \cdot \frac{1}{3}-\ln \left(3 \cdot \frac{1}{3}\right)-5=5-\ln 1-5=0
$$

If we put $y=g(x)$, then we have $g(3)=1 / 3$.
Also

$$
\begin{gathered}
f(x, y)=5 x g(x)-\ln (x g(x))-5=0 \\
5 g(x)+5 x g^{\prime}(x)-\frac{g(x)+x g^{\prime}(x)}{x g(x)}=0 \\
g^{\prime}(x)\left(5 x-\frac{1}{g(x)}\right)=\frac{1}{x}-5 g(x) \\
g^{\prime}(x)=\frac{\frac{1}{x}-5 g(x)}{5 x-\frac{1}{g(x)}}
\end{gathered}
$$

Then

$$
g^{\prime}(3)=\frac{\frac{1}{3}-5 g(3)}{5 \cdot 3-\frac{1}{g(3)}}=\frac{\frac{1}{3}-5 \cdot \frac{1}{3}}{5 \cdot 3-3}=-\frac{4}{3 \cdot 12}=-\frac{1}{9} .
$$

We can conclude that there exists a continuously differentiable function $g(x)$ defined by $f(x, y)=0$ in the neighbourhood of $x=3$, such that $g(3)=1 / 3$.

